Linking Motif Sequences with Tale Types by Machine Learning

نویسندگان

  • Nir Ofek
  • Sándor Darányi
  • Lior Rokach
چکیده

Abstract units of narrative content called motifs constitute sequences, also known as tale types. However whereas the dependency of tale types on the constituent motifs is clear, the strength of their bond has not been measured this far. Based on the observation that differences between such motif sequences are reminiscent of nucleotide and chromosome mutations in genetics, i.e. constitute ”narrative DNA”, we used sequence mining methods from bioinformatics to learn more about the nature of tale types as a corpus. 94% of the Aarne-Thompson-Uther catalogue (2249 tale types in 7050 variants) was listed as individual motif strings based on the Thompson Motif Index, and scanned for similar subsequences. Next, using machine learning algorithms, we built and evaluated a classifier which predicts the tale type of a new motif sequence. Our findings indicate that, due to the size of the available samples, the classification model was best able to predict magic tales, novelles and jokes.units of narrative content called motifs constitute sequences, also known as tale types. However whereas the dependency of tale types on the constituent motifs is clear, the strength of their bond has not been measured this far. Based on the observation that differences between such motif sequences are reminiscent of nucleotide and chromosome mutations in genetics, i.e. constitute ”narrative DNA”, we used sequence mining methods from bioinformatics to learn more about the nature of tale types as a corpus. 94% of the Aarne-Thompson-Uther catalogue (2249 tale types in 7050 variants) was listed as individual motif strings based on the Thompson Motif Index, and scanned for similar subsequences. Next, using machine learning algorithms, we built and evaluated a classifier which predicts the tale type of a new motif sequence. Our findings indicate that, due to the size of the available samples, the classification model was best able to predict magic tales, novelles and jokes. 1998 ACM Subject Classification G.3 Probability and statistics; H.2.8 Database applications Data mining; H.3.1 Content analysis and indexing; H.3.2 Information storage Record classification; I.2.6 Learning Parameter learning

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine.

Establishing transcriptional regulatory networks by analysis of gene expression data and promoter sequences shows great promise. We developed a novel promoter classification method using a Relevance Vector Machine (RVM) and Bayesian statistical principles to identify discriminatory features in the promoter sequences of genes that can correctly classify transcriptional responses. The method was ...

متن کامل

Novel metrics for feature extraction stability in protein sequence classication

Feature extraction is an unavoidable task, especially in the critical step of preprocessing biological sequences. This step consists for example in transforming the biological sequences into vectors of motifs where each motif is a subsequence that can be seen as a property (or attribute) characterizing the sequence. Hence, we obtain an objectproperty table where objects are sequences and proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013